登录 / 注册 微信公众号

人民教育出版社首页 人教数字公司首页

扫一扫
关注官方公众号
"人教教材培训"

附录2 内容标准及实施建议中的实例 第三学段 统计与概率

67 设计调查方法。

了解本年级的同学是否喜欢某电视剧。调查的结果适用于学校的全体同学吗?适用于全地区的电视观众吗?如果不适用,应当如何改进调查方法?

[说明] 对于许多问题,不可能、有时也不必要得到与问题有关的所有数据,只要得到一部分数据(样本)就可以对总体的情况进行估计。很显然,如果得到的样本能够客观地反映问题,则估计就会准确一些,否则估计就会差一些。因此,我们希望寻找一个好的抽取样本的方法,使得样本能够客观地反映问题。在本学段,主要学习简单随机抽样方法,这是收集数据中通用的方法,在一般情况下,我们都假定样本是通过随机的方法得到的。

因为同一个年级的学生差异不大,采用简单随机抽样方法比较合适。可以在上学时在学校门口随机问讯,也可以按学号随机问讯。为了分析方便,需要把问题数字化,如喜欢这部电视剧的记为1,不喜欢的记为0

对于这样的问题,问讯学生数不能少于20人,取40~50人比较合适,取更多的学生当然更好,但需要花费更多的精力。由此可见,一个好的抽样方法不仅希望“精度高”,还希望“花费少”。

假设问讯的学生数为n,记录数据的和为m(显然,m为喜欢这部电视剧的人数),则调查结果说明,学生中喜欢这部电视剧的比例为。我们依此估计本年级的同学中喜欢这部电视剧的比例。

用这个数据估计全地区的电视观众喜欢这部电视剧的比例是不合适的,因为学生、成年人、老年人喜欢的电视剧往往不同。为了对全地区的电视观众喜欢这部电视剧的情况进行估计,可以采用分层抽样方法,比如,依据年龄分层,需要知道各年龄段人口的比例,按照比例数分配样本数,而在各个层内则采取随机抽样;或者依据职业分层,等等。教师应该了解分层抽样,在本学段学生只需学习简单随机抽样方法。

68 某个公司有15名工作人员,他们的月工资情况如下表。计算该公司的月工资的平均数、中位数和众数,并分别解释结果的实际意义。

职务

经理

副经理

职员

人数

1

2

12

月工资/

5000

2000

800

 

[说明] 平均数、中位数和众数都是刻画数据集中趋势的方法,因为方法不同,得到的结论也可能不同。很难说哪一种方法是对的,哪一种方法是错的,我们只能说,能够更客观地反映实际背景的方法要更好一些。在这组数据中有差异较大的数据,这会导致平均数较大,因此,用中位数或众数要比用平均数更客观一些。

不难计算出该公司月工资的中位数和众数均为800元。而月工资的平均数= 加权平均(可以看成是加权平均)= 5000×+2000×+800×= 1240(元)。

因此,加权平均往往就是总体平均,其中的权是数据对应的比例。

69 如果还有一个公司也有15名工作人员,他们的月工资情况如下表。参照例68,比较两个公司的月工资状况。

职务

经理

副经理

职员

人数

1

2

12

月工资/

3000

1800

1000

[说明]容易计算,这个公司的月平均工资也是1240元。但是两个公司月工资的方差相差很大,通过计算可以得到:例68中数据的方差为1174400,本例中数据的方差为294400,前者约为后者的4倍。可以让学生知道,进一步学习“统计与概率”,将会得到“两个方差有非常显著的差异”的结论。

70 比较自己班级与别的班级同学的身高状况。

[说明]对于两个班级学生身高状况比较,通常可以通过平均值来判断,但有时候仅仅通过平均数是不够的,如果一个班同学之间身高差异很大,而另一个班同学之间身高差异很小,即使前一个班的平均高一些,也不能说这个班的整体状况很好。因此,在判断身高状况时,不仅要看平均值,还需要参考方差。

进一步,可以引导学生逐渐深入地进行数据分析,可以要求学生把身高分段,画出频数直方图,并引导学生讨论,通过直方图是否能得到更多的信息。

71 下表给出了我国1992~2004年国内生产总值(GDP)。在直角坐标系上描出坐标(年,GDP),并试用直线表示发展趋势。

1992~2004年中国GDP变化表(单位:亿元)

年份

1992

1993

1994

1995

1996

1997

1998

GDP

23938

34634

46759

58478

67885

74463

78345

年份

1999

2000

2001

2002

2003

2004

 

GDP

82067

89468

97315

105172

117390

136876

 

 

 

 

 

 

[说明] 在现实生活中,有许多数据是与时间有关的,因此这些数据会呈现发展趋势。学生应当能够理解报刊书籍中的这类数据的表达,包括表格、描点、折线图、趋势图等,并且尝试自己表达分析。

567

22

对于上述数据,学生应当会描点,虽然这时直角坐标系的度量单位与书本上教的是不一样的,但是只要刻度之间的比例关系一致,表达就是合理的,让学生感悟到:对于实际问题往往需要具体问题具体分析,而不能单纯地套用书本上学到的知识。因为描点呈现线性增长趋势,可以进一步引导学生利用直线来表示这种趋势,预测未来经济发展,感悟一些随机现象的规律性。

对于“用直线表示发展趋势”的问题,原则上可以画出很多条直线,教师可以引导学生思考和讨论如何画出合适的直线、如何制订“合适直线”的标准,并且告诉学生,在高中阶段“统计与概率”的学习中将会解决这个问题,引发学生的学习兴趣。

这个例子可以举一反三,不一定局限与时间有关的数据,比如,学生身高与体重的关系,同一种树的树叶长与宽的关系(参见例78)。也可以组织学生查阅资料,探究进出口总量与GDP的关系,人均收入与GDP的关系,等等。

72 将下面这些卡片混在一起,从中任意选取一张卡片,这张卡片是船的概率是多少?是车的呢?

23

[说明] 这是例41的继续。学生已经能够理解:任意选取一张卡片,这张卡片是船的可能性比是车的可能性大,现在应当明确地知道其概率分别是

这个例子可以举一反三,如转动转盘,当转盘停止时指针指向某一特定部分的概率;一个袋子里有几种颜色、数量不同的球,随机摸出某种颜色球的概率,等等。

73 分析掷两个骰子点数之和的可能性的大小。

[说明] 这个问题看起来很难,无从下手。事实上,这也是简单事件的问题,利用例10的图,可以得到结论:对应的格子越多可能性越大。比如,点子之和为7的可能性最大,为2或者12 的可能性最小。